
Intrathecal Delivery of Mesenchymal Stromal Cells

Protects the Structure of Altered Perineuronal

Nets in SOD1 Rats and Amends the Course of ALS

SERHIY FOROSTYAK,
a,b

ALES HOMOLA,
a,b

KAROLINA TURNOVCOVA,
a,b

PAVEL SVITIL,
a,b

PAVLA JENDELOVA,
a,b

EVA SYKOVA
a,b

Key Words. Neurodegeneration • Stem cells • Extracellular matrix • Proteoglycans • Preclinical
trials

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder resulting in a lethal

outcome. We studied changes in ventral horn perineuronal nets (PNNs) of superoxide dismutase

1 (SOD1) rats during the normal disease course and after the intrathecal application (5 3 10
5

cells) of human bone marrow mesenchymal stromal cells (MSCs) postsymptom manifestation. We

found that MSCs ameliorated disease progression, significantly improved motor activity, and

prolonged survival. For the first time, we report that SOD1 rats have an abnormal disorganized

PNN structure around the spinal motoneurons and give different expression profiles of chon-

droitin sulfate proteoglycans (CSPGs), such as versican, aggrecan, and phosphacan, but not link

protein-1. Additionally, SOD1 rats had different profiles for CSPG gene expression (Versican,

Hapln1, Neurocan, and Tenascin-R), whereas Aggrecan and Brevican profiles remained

unchanged. The application of MSCs preserved PNN structure, accompanied by better survival

of motorneurons. We measured the concentration of cytokines (IL-1a, MCP-1, TNF-a, GM-CSF,

IL-4, and IFN-c) in the rats’ cerebrospinal fluid and found significantly higher concentrations of

IL-1a and MCP-1. Our results show that PNN and cytokine homeostasis are altered in the SOD1

rat model of ALS. These changes could potentially serve as biological markers for the diagnosis,

assessment of treatment efficacy, and prognosis of ALS. We also show that the administration

of human MSCs is a safe procedure that delays the loss of motor function and increases the

overall survival of symptomatic ALS animals, by remodeling the recipients’ pattern of gene

expression and having neuroprotective and immunomodulatory effects. STEM CELLS

2014;32:3163–3172

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a pro-
gressive neurodegenerative disorder that
causes the dysfunction of motoneurons (MNs),
resulting in the sufferer’s death within 3–5
years after onset. Most patients are diagnosed
with ALS 10–15 months after the first symp-
toms appear due to the absence of specific
diagnostic markers. At present, the only drug
of choice (Riluzole) does not counteract the
progression of the disease, and therefore the
results of such therapy are still unsatisfactory
[1]. New perspectives for the treatment of
neurodegenerative diseases such as ALS have
been opened by the discovery of stem cells
(SC). Various SC types isolated from fetal or
embryonic tissues have been successfully used
to treat CNS in vivo and even clinical trials
involving patients have been conducted [2–6].
The therapeutic effects of SCs are based on
their ability to secrete growth factors, gener-

ate replacements for affected or missing cells
(including neurons), differentiate into neural
cells, and establish functional connections
between grafted and host cells after transplan-
tation [7–10]. The delivery of embryonic and
induced pluripotent stem cells has been shown
to promote functional, behavioral, and mor-
phological improvements, extend survival, and
even structurally integrate into the segmental
motor circuitry of mutant superoxide dismu-
tase 1 (SOD1) animals [11–15].

Adult stem cells, such as bone marrow mesen-
chymal stromal cells (MSCs), isolated from mature
organisms, could be used as an alternative to
embryonic and fetal cells with a smaller risk of
side effects. All MSC populations (bone marrow,
adipose tissue, etc.) have been shown in in vitro
studies to express a large variety of neuronal
genes and transcription factors with a wide differ-
entiation potential [16–18]. The therapeutic
effects of MSCs are very complex, but could be
explained by the secretion of a wide range of
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substances, either by host cells or by the MSCs themselves (para-
crine function), that play a crucial role in nourishing neurons,
reducing neuronal sensitivity to glutamate receptor ligands, alter-
ing gene expression, and thus reactivating cell plasticity in the CNS
[19]. In vitro, in vivo, preclinical, and clinical safety studies have
shown that the generation and grafting of MSCs effectively enhan-
ces repair, slows apoptosis, and supports the remaining host MN,
inhibits inflammation, and does not induce an immune response
or tumor formation [20–24]. Moreover, MSCs are also known for
transferring and propagating functional mitochondria into the tar-
get cells, thus rescuing the host cells’ mitochondrial functions [25,
26]. The above properties of MSCs make these cells among the
leading candidates for application in patients [19].

Normal functioning of the CNS depends not only on the
interaction of neural cells with other cell types but also on a
healthy extracellular matrix (ECM). The perineuronal net (PNN) is
a layer of condensed pericellular matrix that aggregates and
wraps around the soma and proximal dendrites of interneurons
and MN [27]. PNNs are made of a hyaluronan backbone, to
which several types of chondroitin sulfate proteoglycans (CSPGs)
are bound through cartilage link protein-1 and with tenascin-C
and tenascin-R molecules binding to the core proteins [28–30].
PNNs can be visualized starting from the late period of develop-
ment (critical period), when ECM molecules form stable aggre-
gates triggered by the upregulation of link protein-1 [29]. ECM is
involved in the formation of synaptic connections as well as in
CNS plasticity. For example, CSPGs have been shown to play an
important role in axonal guidance during CNS development and
regeneration [27, 31, 32]. Conversely, CSPGs are upregulated in
activated astrocytes after injury to the CNS, leading to the
restriction of anatomical and synaptic plasticity [33, 34]. Aber-
rant PNN formation has been reported to contribute to the
onset of schizophrenia [35]. Accumulation of some CSPGs (neu-
rocan and versican) in the ventral spinal cord has been related
to neurodegeneration in the rat model of ALS [36]. Matrix
metalloproteinase-9 (MMP-9), that belongs to a large family of
extracellular proteases, has been shown to be altered in ALS-
patients and to define and trigger the degeneration of MN sub-
sets that are destined to die [37, 38]. Impairment of ECM struc-
tures and molecules might have important implications for the
understanding of pathogenesis, development of novel strategies
for diagnosis, and early treatment of CNS disorders. However,
there is still a lack of information on this topic. The aim of this
study is to investigate mRNA and protein expression of CSPGs
(versican, aggrecan, phosphacan, and link protein-1), as well as
to evaluate the effect of intrathecal delivery of human bone
marrow MSCs on the PNN structure and the course of the dis-
ease, using symptomatic SOD1-transgenic rats.

MATERIALS AND METHODS

An extended Materials and Methods section is available as
Supporting Information (Supporting Information Methods).

RESULTS

MSCs Characteristics

Human MSCs (hMSCs) were characterized according to the
recommendations of the International Society for Cellular

Therapy [39]. Tested hMSCs expressed the following mesen-
chymal surface markers: CD29, CD44, CD73, CD90, and
CD105; meanwhile, the cells were negative for CD34, CD45,
CD235a, and CD271 (Supporting Information Fig. S1A). MSCs
used in the study differentiated toward three phenotypes:
osteogenic, adipogenic, and chondrogenic, as proven by stain-
ing for calcium deposits (Alizarin red), oil droplets (oil red O),
and acid mucopolysaccharides (Alcian blue), respectively (Sup-
porting Information Fig. S1B–S1D). Cultured MSCs expressed a
major cytoskeletal component of mesenchymal cells, vimentin
(Supporting Information Fig. S1E).

Effects of MSC Implantation on Rat Motor Function

and Survival

Rats were considered for MSCs/vehicle transplantation based
on the following criteria: dropped BBB score from 21 to 17–
16, decreased grip strength by more than 400 g, and/or the
loss in body weight (Fig. 1A, 1B). The beginning of the disease
did not differ between the two groups of SOD1 rats (Fig. 1E).
However, the application of MSCs significantly improved
motor performance (Basso-Beattie-Bresnahan [BBB] score test,
p� .05) and muscle strength (grip strength test, p� .05)
when compared with vehicle-treated rats. The difference in
motor activity between the two groups gradually increased
with the course of the disease, whereas the dynamics of body
weight loss did not mirror this (Fig. 1A–1C). The wild-type
(WT) rats that received MSCs/Dulbecco’s modified Eagle’s
medium (DMEM) did not show changes in tested parameters
related to the cell/vehicle delivery (Fig. 1A–1C). Motor unit
number estimation (MUNE) in the medial gastrocnemius mus-
cle revealed the following baseline values of motor units
number for group of MSC-treated (n 5 6) and the vehicle-
injected animals (n 5 6): 1316 15, and 1276 18, respectively.
At 26 weeks of age, a significant reduction in the number of
motor units was found (646 12 vs. 596 10) compared to the
baseline values. As the disease progressed, the number of
motor units continuously declined to 266 4 versus 256 6 at
29 weeks, but no statistical differences between both groups
of SOD1 rats were found (Fig. 1G). Motor nerve conduction
velocity was derived from latencies of M waves, elicited by
electrical stimulation of the sciatic nerve. Latencies of M
waves at 8 weeks were 1.956 0.05 ms versus 1.876 0.03 ms
(MSC-treated vs. vehicle-treated) and did not changed signifi-
cantly during the disease course (1.886 0.02 ms vs.
1.916 0.03 ms at 29 weeks). However, transplantation of 5 3

105 MSCs was sufficient to significantly extend the lifespan of
the cell-treated rats (group mean 209.3 and 195.7 days,
respectively; p� .05) by almost 14 days (Fig. 1D, 1F).

Neuroprotective Effect of MSCs on MN

SOD1 rats, regardless of experimental treatment, showed sig-
nificantly lower numbers of cervical (Fig. 1H) and lumbar (Fig.
1I) MN, compared to age-matched WT rats. However, the
delivery of MSCs into symptomatic SOD1 rats partially rescued
cervical (p� .001) and lumbar (p� .05) MN. No differences
between the MSCs- and vehicle-treated groups were detected
using MUNE analysis; however, the significantly better survival
of MN in the spinal sections of MSC-treated rats favors the
dying-back axonopathy theory of ALS development, when MN
are partially rescued by MSCs, but their axons are unable to
properly innervate the target muscles.
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Survival and Biodistribution of MSCs

To determine the survival and fate of the grafted hMSCs, spi-
nal cord sections were stained with human-specific markers
for mitochondria (MtC02) and nuclei (HuNu). Despite the tri-
ple immunosuppression of the animals, we did not find cells
positively stained with human-specific antibodies in the longi-

tudinal sections. Therefore, in parallel we performed experi-

ments using rat MSCGFP1, that were intrathecally delivered

following the same protocol. Two weeks later, animals were

sacrificed and their organs were used for histological evalua-

tion of cell survival and biodistribution. Similarly to hMSCs, 14

days after cell transplantation samples were analyzed and no

Figure 1. Delivery of bone marrow mesenchymal stromal cells (BMSC) significantly extended the disease course and lifespan and sup-
ported MN survival when compared with vehicle-injected animals. Grafted MSCs significantly slowed the decline in limb grip strength (A)
and motor performance of SOD1 rats (B), but did not affect the body weight loss (C). The Kaplan-Meier method shows significantly better
survival of MSC-grafted SOD1 rats (D, F). The beginning of the disease did not differ between the two groups of SOD1 rats (E). MUNE in the
medial gastrocnemius muscle showed no difference in motor unit numbers between MSC-treated and vehicle-injected SOD rats (G). The
combination of IHC staining with an unbiased stereological method on serial sections of the spinal cord showed a significantly higher num-
ber of MN in MSC-treated animals at the cervical (H) and lumbar (I) levels. Arrows indicate the time of transplantation. Error bars indicate
SEM. Significance at: *, p� .05; **, p� .01; ***, p� .001. Abbreviations: BBB, Basso-Beattie-Bresnahan test; DMEM, Dulbecco’s modified
Eagle’s medium; MN, motoneurons; MUNE, motor unit number estimation; SOD1, superoxide dismutase 1; WT, wild type.
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green fluorescent protein (GFP)-positive cells were discovered
in either the cerebrospinal fluid (CSF) or histological sections
of the spinal cord, brain, lungs, spleen, or liver.

Changes to PNNs

By evaluating samples stained with immunohistochemistry
(IHC), we found that WT animals have normal PNNs around
MNs (Fig. 2A–2D), whereas all transgenic (Tg) rats at the end-
stage of the disease had disorganized and attenuated PNN
structures (Fig. 2E–2L). Interestingly, MSC-treated SOD1 rats
(Fig. 2E–2H), despite having attenuated PNNs when compared
with WT animals, displayed a significantly reduced deteriora-
tion of their PNN structures when compared with vehicle-
treated rats (Fig. 2I–2L). Quantification of Wisteria floribunda
agglutinin (WFA) staining intensity showed that all SOD1 rats
had a lower fluorescent intensity at the cervical (Fig. 2M) and
lumbar (Fig. 2N) levels when compared with WT age-matched
littermates (p 5 .108 and p 5 .012, respectively). The delivery
of MSCs into symptomatic rats significantly preserved their
PNNs at the cervical (Fig. 2M) and lumbar levels of the ven-
tral horns (Fig. 2N) when compared with vehicle-injected
SOD1 rats (p 5 .000008 and p 5 .00021, respectively). We
found a significant difference in WFA staining intensity
between the cervical and lumbar levels within the cell-treated
SOD1 group (p 5 .026) and no changes in the WT and vehicle-
injected groups, suggesting that proximity to the site of cell
application is essential to achieve the best effects implied.

IHC evaluation of CSPGs revealed significantly decreased
expression of versican (Fig. 3A, p 5 .006 [WT vs. DMEM] and
p 5 .0011 [WT vs. MSC]; Supporting Information Fig. S2) and
aggrecan (Fig. 3B, p 5 .011 [WT vs. DMEM] and p 5 .0027
[WT vs. MSC]; Supporting Information Fig. S3) in the ventral
horns of SOD1 rats compared with WT littermates and did
not show any difference in the expression of these proteins
between MSC-treated and vehicle-injected SOD1 rats. The
expression of link protein-1 (Fig. 3C; Supporting Information
Fig. S4) was comparable among all groups of animals
(p 5 .053 [WT vs. DMEM], p 5 .16 [MSC vs. DMEM], and
p 5 .7 [WT vs. MSC]). Anti-phosphacan antibody staining
intensity (Fig. 3D; Supporting Information Fig. S5) was signifi-
cantly decreased in the vehicle-injected SOD1 animals when
compared with WT rats (p 5 .026) and did not differ from
that of MSC-treated SOD1 animals.

RT-qPCR Evaluation of CSPG Gene Expression

The expression of mRNA for the main core proteins was stud-
ied in SOD1 rats and compared with those of age-matched lit-
termates. Versican (transcript variants, V1–4) mRNA
expression in the spinal cord of sham-treated SOD1 rats was
significantly decreased when compared with WT animals
(p 5 .042), while the MSC-treated SOD1 rats did not show any
difference (Fig. 3E). Despite significant changes in the expres-
sion of aggrecan between WT and Tg animals, there were no
changes in the corresponding gene expression in the spinal
cords (Fig. 3F).

In contrast, there was a significant difference in hapln1

mRNA expression (Fig. 3G) between SOD1 (MSC- and sham-
treated) and WT rats (p 5 .0007 and p 5 .015, respectively),
despite the similar expression of corresponding proteins in
the spinal cords of WT and SOD1 animals. Upregulation of
hapln1 mRNA expression in MSC-treated SOD1 animals when

compared with vehicle-treated rats was shown to be near sig-
nificance (p 5 .054). Other PNN compounds, neurocan (Fig.
3H) and tenascin-R (Fig. 3I), had upregulated mRNA expres-
sion only in MSC-treated SOD1 rats when compared with WT
littermates (p 5 .039 and p 5 .014, respectively). The analysis
of brevican mRNA expression was very consistent and showed
no differences among the groups (Fig. 3J). At this stage, it
remains unresolved whether the above changes are primary
or a reflection of CNS degeneration and disease progression.
Future experiments studying the timing of PNN structural
changes at various stages of disease progression will be
needed.

Analyses of Apoptosis (TUNEL Assay)

The intensity of TUNEL staining measured in the ventral horns
at the cervical level (Fig. 3K) was significantly higher in the
vehicle-treated SOD1 rats when compared with WT (p 5 .001)
and MSC-treated SOD1 rats (p 5 .01); we found no differences
between MSC-treated and WT rats (p 5 .29). At the lumbar
level we observed that both cell- and vehicle-treated SOD1
rats had a significantly greater degree of DNA fragmentation
compared to WT littermates (p 5 .004 and p 5 .0007, respec-
tively), but we did not observe significant changes between
MSC-treated and vehicle-injected Tg subjects (Fig. 3L).

Analyses of Cytokines in the CSF

The CSF of cell-treated SOD1 rats contained significantly
higher concentrations of IL-1a (p� .05) and MCP-1 (p� .01)
when compared with sham-treated SOD1 and WT rats (Fig.
4A, 4B). There was also a tendency toward an increase in
TNF-a (Fig. 4C) and IFN-c (Fig. 4F) levels in the CSF of both
SOD1 groups when compared with cell- and vehicle-injected
WT rats. Interestingly, neither the SOD1 nor the WT groups of
MSC-treated rats showed any signs of GM-CSF in their CSF
(Fig. 4D). IL-4 was either absent in the CSF or present in very
small quantities in all groups of animals (Fig. 4E).

DISCUSSION

This study was designed as a preclinical trial aiming to evalu-
ate the regenerative effect and safety of hMSCs delivered
intrathecally into SOD1 transgenic rats after the manifestation
of the first disease symptoms. The application of hMSCs sig-
nificantly improved motor activity, prolonged survival,
decreased apoptosis, and protected the spinal MN of SOD1
rats. Our results support the dying-back theory of ALS devel-
opment. We tested the hypothesis that changes in PNN struc-
ture are involved in the pathobiology of ALS. For the first
time, we report that the ECM of SOD1 animals has a different
composition than that of age-matched WT littermates, as indi-
cated by a disorganized PNN structure around the spinal MN
and the different immunohistological profiles of some spinal
CSPGs (versican, aggrecan, and phosphacan, but not hapln1).
We showed that SOD1 rats have different gene expression
profiles of some spinal CSPGs (Versican, Hapln1, and Tenascin-

R), whereas others (Aggrecan, Neurocan, and Brevican)
remained unchanged. Moreover, hMSC application rescued
the PNN structure around spinal MNs and affected the
expression of some CSPG genes, suggesting the reactivation of
CNS plasticity. Finally, we found significantly higher
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concentrations of IL-1a and MCP-1 in the CSF of SOD1 com-
pared to WT rats.

Different routes for the transplantation of MSCs have
been tested: local (intraspinal, intramuscular), systemic (intra-
venous, intra-arterial, etc.), and combined, each having their

advantages and disadvantages. To ensure the study can be
successfully translated from the bench to the bedside, the
main criterion that should be followed while designing a pre-
clinical trial should be safety and minimal invasion of the
methods used. In our previous work, we showed how the

Figure 2. WFA staining visualizes the perineuronal nets (PNNs) around motoneurons (SMI 32) in the ventral horns of wild-type (A–D),
end-stage SOD1 mesenchymal stromal cell-treated (E–H) and symptomatic SOD1 sham-treated (I–L) rats. A further quantification of WFA
staining intensity from the ventral horns (interrupted line) of MSC-treated SOD1 rats (violet columns) showed that these animals had a
significantly better preserved PNNs in both the cervical (M) and lumbar (N) levels of the spinal cord, when compared with sham-treated
SOD1 animals (green columns) and age-matched WT littermates (empty columns). Both groups of SOD1 rats had attenuated PNNs; how-
ever, this difference was not significant at the cervical level, where the MSCs were delivered, whereas at the lumbar level all SOD1 rats
had a significantly weaker intensity of PNN staining (M, N). Error bars indicate SEM. Significance at: *, p� .05; **, p� .01; ***, p� .001
(scale bars5 50 mm). Abbreviations: BMSC, bone marrow mesenchymal stromal cells; DMEM, Dulbecco’s modified Eagle’s medium;
SOD1, superoxide dismutase 1; WFA, Wisteria floribunda agglutinin; WT, wild type.
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combined (intraspinal and intravenous) transplantation of rat
MSCs into SOD1 animals led to a 6% increase in survival and
significantly better preserved motor functions [21]. In this
study, we used the intrathecal route and found a significantly
prolonged lifespan (by 7%), higher motor activity and
increased MN survival. We believe that access to epidural
space via lumbar puncture and intrathecal drug application is
a clinically relevant, noninvasive, and safe procedure that is
already widely used in practice, and could therefore be effec-
tively used for cellular therapy of patients with ALS. More-
over, if necessary this procedure could be repeated enabling
repeated cell application. Our results are consistent with
those of Boucherie et al., who reported the prolongation of
lifespan and MN survival after intrathecal delivery of rat MSCs
into symptomatic SOD1 animals [40]; however, our results
might be more clinically relevant considering the type and
number of the grafted cells. A similar study by Morita et al.
reported delayed disease onset and better survival of MSC-
treated females, but not males, after grafting rat MSCs onto
the fourth ventricle [41]. Some studies, including those

already mentioned by Morita and Boucherie, describe the
abundant survival, migration, and astroglial differentiation of
grafted MSCs, whereas others show limited viability and
migration of hMSCs [42, 43] or do not report graft survival at
all [44]. Our observations indicate that despite adequate
immunosuppression, the transplants did not survive in the
CNS or subdural space in either WT or SOD1 rats. We asked
whether the MSCs did not survive due to their heterogenic
origin, an insufficient number of transplanted cells or perhaps
because of the CSF composition. To answer these questions,
we performed experiments in which the same number of rat
MSCsGFP1 was delivered into immunosuppressed age-matched
WT rats. Surprisingly, already 14 days after cell transplantation
GFP-positive cells could not be detected in the spinal cord,
brain, lungs, spleen, or liver. We can speculate that the MSCs
did not survive due to the extraneous environment and/or
the composition of the CSF, rather than the cells’ origin.
Nevertheless, the time spent by the transplant in the host
organism seems to be sufficient to potentiate better MN sur-
vival, exert an antiapoptotic effect, and extend lifespan.

Figure 3. Semiquantitative analysis of chondroitin sulfate proteoglycans (CSPGs) immunofluorescence staining intensity measured in
the spinal ventral horns (A–D). Gene expression profiles of CSPGs were evaluated in the spinal cords of wild-type and SOD1 transgenic
rats by means of the RT-qPCR method (E–J). The level of apoptosis in the spinal cord was studied by means of the TUNEL assay (K, L).
Error bars indicate SEM. Significance at: *, p� .05; **, p� .01; ***, p� .001. Abbreviations: BMSC, bone marrow mesenchymal stromal
cells; DMEM, Dulbecco’s modified Eagle’s medium; SOD1, superoxide dismutase 1; WT, wild type.
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Moreover, proximity to the delivery site results in various
neuroprotective effects: more distal equals less effective. We
can assume that the long-term survival of the graft is not cru-
cial to achieve the protective potential of MSCs, and it is
probable that repeated implantation(s) of MSCs could poten-
tially lead to an even better outcome. On the platform of cur-
rent and similar studies from other groups, a 3-year,
nonrandomized, open label clinical trial was launched in
March 2012, in Prague (Czech Republic), aiming to assess the
safety and efficacy of autologous multipotent MSCs applied to
patients with a confirmed diagnosis of ALS (http://www.sukl.
eu). So far, 20 patients have been recruited for the trial and
injected with autologous MSCs via lumbar puncture without
any adverse effects [19].

Considering that spinal PNNs form around MNs and that
ALS is characterized by the selective death of MNs, we ques-
tioned the involvement of the ECM in ALS pathobiology. Using
the SOD1 model of the disease we found a disorganized and
vestigial spinal PNN structure in the ventral horns of terminal
Tg rats; meanwhile, 1-month-old presymptomatic SOD1 rats
and their WT littermates had a typical PNN pattern around their
spinal MN. Earlier, Galtrey et al. identified molecules of the
ECM (hyaluronan, link protein-1, aggrecan, tenascin-R, and

phosphacan) that are essential for PNN formation, while others
have been shown to be optional for the formation of PNNs
[45]. Based on these data, we analyzed the essential CSPG mol-
ecules and the corresponding gene expression profiles in SOD1
spinal cord. We found decreased expression levels of aggrecan,
phosphacan, and versican, but normal link protein-1, at the ter-
minal phase of the disease. These findings are slightly different
to those published by Mizuno et al., who reported an upregula-
tion of neurocan, versican, and phosphacan proteins in the spi-
nal cord of the His46Arg model of ALS and related this
upregulation to reactive astrogliosis [36]. Unlike Mizuno, we
visualized the whole PNN structure together with its core com-
ponents and colocalized them with the CSPG gene expression
profiles. Our results demonstrate that only the link protein-1
gene (Hapln1) is upregulated, while Versican is downregulated
at the terminal stage; other genes—Aggrecan, Tenascin-R, Neu-

rocan, and Brevican—are expressed in a similar pattern as in
age-matched WT controls. The described “cross” (upregulation
of the Hapln1 and downregulation of the Versican genes) in the
spinal cord of SOD1 rats is reminiscent of the effect described
after the application of chondroitinase ABC to promote sprout-
ing and axonal regeneration after spinal cord injury and may be
a compensatory mechanism to restore the normal function of

Figure 4. Cytokine levels IL-a (A), MCP-1 (B), TNF-a (C), GM-CSF (D), IL-4 (E), IFN-c (F) measured by a fluorescence-activated cell sorting-
bead assay in the CSF of SOD1 and WT littermates with and without the application of mesenchymal stromal cells. Error bars indicate SEM.
Significance at: *, p� .05; **, p� .01; ***, p� .001. Abbreviations: BMSC, bone marrow mesenchymal stromal cells; DMEM, Dulbecco’s modi-
fied Eagle’s medium; SOD1, superoxide dismutase 1; WT, wild type.
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the CNS [46]. This compensatory mechanism aims to reactivate
plasticity, preserve the remaining neurons, and facilitate the
formation of new synaptic connections. Despite the disorgan-
ized PNNs structure shown by WFA staining at the terminal
stage of MSC-treated rats, CSPG analysis showed no major dif-
ferences in the amount of these proteins between sham- and
cell-treated transgenic animals. It is still unclear whether the
changes in PNNs structure are primary or are just a reflection of
neural dysfunction and neuronal death. It would also be useful
to understand which lacking or dysfunctional molecules lead to
PNN disintegration. The answer to these questions could unveil
new mechanisms underlying ALS development, thus leading to
the discovery of diagnostic markers and even effective
therapies.

Under normal conditions, the spinal cord is predisposed
for spontaneous neurogenesis by the mobilization of its own
neural stem/progenitor cells [47, 48]. However, SOD1 trans-
genic animals are known to have limited endogenous neuro-
genesis and an inhospitable microenvironment [49].
Considering that intrinsic neurogenesis and the renewal of
ECM homeostasis are not sufficient to restore normal CNS
function after the onset of ALS, we can assume that extrinsic
assistance might have a beneficial effect to support the nor-
mal function and structure of CNS components. MSCs might
be an ideal candidate for this purpose, as they have been
shown to reduce neuronal sensitivity to glutamate receptor
ligands and to alter gene expression in the damaged CNS,
thus suggesting a link between the therapeutic effects of
MSCs and the activation of cell plasticity [50]. MSCs are also
known to induce graft-to-host exchange of trophic factors,
modulate innate and adaptive immune responses, stimulate
angiogenesis, promote the activation, proliferation, migration,
and differentiation of endogenous stem cells, and even trans-
fer mitochondria to host cells [51, 52]. We could not find evi-
dence of mitochondrial transfer from hMSCs into host cells in
our experiments by means of immunohistological markers
(negative human MTC02 staining). We asked if the application
of MSCs could potentiate extracellular plasticity in order to
maintain the PNN structure. Our results indicate that MSC-
treated SOD1 rats had significantly upregulated expression of
the Hapln1, Neurocan, and Tenascin-R genes, compared with
WT controls or vehicle-injected littermates. Link protein-1 is a
molecular trigger of PNN formation during the critical period
and together with other CSPGs (versican or tenascin-C and -R)
plays a fundamental role in limiting CNS plasticity, axonal
migration, and regeneration following spinal cord injury. Based
on a comparison of our data with those described during the
critical period of PNN formation we could hypothesize that
MSC application reactivated adult CNS plasticity [29]. Addi-
tionally, PNNs have been shown to protect neurons against
oxidative stress, modulate short-term glutamate receptor
mobility and signal transmission as well as being involved in
stem cell differentiation [29, 53–55]. Thus, we can assume
that MSC application has a neuroprotective effect not only via
a direct influence on the grafted cells to the host MN but
also through the indirect preservation of the PNN structure.
While the exact mechanism of plasticity reactivation is still
not known one possible explanation might be the formation
of exosomes by MSCs, that contain a great variety of biologi-
cally active molecules, lipids, proteins, growth-factor recep-
tors, messenger, and microRNA, which are released into

the ECM and then fused and incorporated into the host cells
[19, 56–58]. Matrix metalloproteinases (MMPs) and their tis-
sue inhibitor alterations have also been shown to act as fun-
damental effectors of ECM remodeling and stem cell
mobilization [38]. Thus, another possible explanation could be
that after MSCs application the structure of PNN proteins was
modified by MMPs (or the other way around). Future
research should be focused on this topic.

The onset and progression of ALS have also been recently
linked with mutant-SOD1-mediated toxicity within microglia
cells, together with the activation of astrocytes and macro-
phages [59–61]. Microglia act as a primary mediator of
immune/inflammatory responses present in ALS, even before
the first signs of motor dysfunction [62–64]. Aggregated SOD-1
proteins stimulate macrophages and microglia to produce cyto-
kines and chemokines (TNF-a, IL-1a, IL-1b, IL-6, GM-CSF, IL-17A,
etc.), causing a suppression of the patient’s T-regulatory path-
ways and increases their vulnerability to IL-17A-mediated dam-
age [65]. This cascade, however, could be modified by the
reconstitution of T cells following bone marrow transplantation
into transgenic SOD1 mice lacking functional T and B cells,
resulting in the prolongation of survival [66]. Extended survival
of rats after intrathecal hMSC application was accompanied by
a decreased level of spinal cord apoptosis and a tendency
toward an elevation of IL-1a and MCP-1, accompanied by a
slight decline of TNF-a in the CSF of SOD1 rats. Observed atte-
nuated apoptosis may be explained by the cleavage of MMP3
to TNFa family ligands (FasL and TNFa, respectively) [67]. Ele-
vated MCP-1 (most likely astrocytic), which is known to have a
direct neuroprotective effect in excitotoxicity and to be neuro-
protective by upregulation of the neurotrophic molecule
expression in astrocytes, could serve as evidence of the neuro-
protective and antiapoptotic effect stimulated by intrathecal
delivery of MSCs [68, 69]. The above chemokines are expressed
at a high level even before initial ALS symptoms appear and,
therefore, could potentially be used as biological markers and
potential therapeutic targets [65, 70].

CONCLUSIONS

Our preclinical study demonstrates that the intrathecal adminis-
tration of hMSCs is a safe procedure that is able to delay the
decline in motor function and increase survival of symptomatic
ALS animals. We have shown that hMSCs have a neuroprotec-
tive effect and are able to remodel the recipient’s gene expres-
sion profile, thus reactivating CNS plasticity. Our study provides
evidences that ECM and cytokine homeostasis are affected in
SOD1 rats and that the described changes of PNN structure and
the levels of MCP-1 and IL-1a in the CSF could potentially serve
as biological markers for the diagnosis and prognosis of ALS.
Our study has uncovered new links in the pathology of ALS, pro-
viding an optimistic future for MSC-based therapy and encour-
ages the discovery of biological (diagnostic and prognostic) ALS
markers that could be used in patients.
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